Given a string $S$ and $n$ string $T_1, T_2,...,T_m$
Find the longest substring of $S$ that can be created using $T_1, T_2,...T_m$. One string can be used multiple times.
### Input
- The first line contains an integer $n$.
- The second line contains string $S$.
- The next $n$ lines, the $i^{th}$ line contains string $T_i$.
### Output
- Print the length of the longest substring can be formed from $T_1, T_2,...,T_m$.
### Constraints
- $1 \le n , |S| \le 2000$.
- $\sum{|T_i|} \le 10^5$.
### Example
Input:
```
3
abbac
ac
b
a
```
Output:
```
5
```