Given $n$ prime numbers $P_1, P_2,\ldots, P_n$, count the number of integers in the range $[L,R]$ that are divisible by **exactly one** prime in $P$.
### Input
- The first line contains 3 integers $n, L, R$.
- The second line contains $n$ primes $P_i$. It is guaranteed that values in $P$ are pairwise distinct.
### Output
- Print the answer.
### Constraints
- $1 \le n \le 20$.
- $1 \le P_i \le 10^{6} $.
- $1 \le L \le R \le 10^{18}$.
### Example
Input:
```
2 5 16
3 5
```
Output:
```
5
```