Given an integer $x$ with $m$ digits, denote $d_i$ as the $i$-th digit from left to right of this integer. If we choose a digit at position $p$ such that $1 \le p \le m$ as the center of this number, the weight on the left side is:
$ \sum_{i=1}^{p-1} d_i \times (p - i) $
and similarly, the weight on the right side is:
$ \sum_{i=p+1}^{m} d_i \times (i - p) $
A number is considered balanced if there exists a position $p$ such that the weight on the left side is equal to the weight on the right side. Count the number of balanced integers in the range $[a, b]$.
### Input
- A single line containing two integers $a, b$.
### Output
- Print an integer representing the number of balanced integers in the range $[a, b]$.
### Constraints
- $1 \le a \le b \le 10^{18}$
### Example
Input:
```
7604 24324
```
Output:
```
897
```