Given an array $a$ consisting of $n$ elements. The value of a contiguous subarray $a[l...r]$ is defined as $\text{min}(a_l, a_r) \times (r - l - 1)$. Find the maximum value of any contiguous subarray of the array $a$.
### Input
- The first line contains an integer $n$.
- The second line contains $n$ integers $a_i$.
### Output
- Print a single integer representing the maximum value of any contiguous subarray.
### Constraints
- $1 \leq n \leq 5 \times 10^5$.
- $1 \leq a_i \leq 10^9$.
### Example
Input:
```
4
1 4 2 5
```
Output:
```
4
```