Given a sequence of $n$ integers $a_1,a_2,...,a_n$ and two positive integers $1 \le L \le R \le n.$ Find a subsequence of consecutive elements with length $s$ $(L \le s \le R)$ which has the largest sum of elements.
### Input
- The first line contains three integers $n,L,R$ $(1 \le n \le 10^5)$
- The second line contains $n$ integers $a_1,a_2,...,a_n (|a_i| \le 10^9)$
### Output
Contains a line containing a number that is the sum of the largest elements of the subsequence found.
Input:
```
5 2 3
1 3 -1 5 -1
```
Output:
```
7
```
### Subtask
- Subtask 1 ($30 \\%$): $n \le 100$
- Subtask 2 ($30 \\%$): $n \le 5000$
- Subtask 3 ($40 \\%$): No additional constraints