For two non-negative integers $a, b$, calculate the sum of the floor of the square root for all integers $i$ with $a \leq i \leq b$. In other words, calculate: $\sum_{i=a}^b \lfloor \sqrt{i} \rfloor$.
Here, $\lfloor a \rfloor$ denotes the greatest integer not greater than $a$.
### Input
- Contains a single line with two positive integers $a, b$.
### Output
- Print the result of the calculation.
### Constraint
- $1 \le a \le b \le 10^{12}$.
### Sample Test
**Input 1**
```
3 10
```
**Output 1**
```
17
```
**Explanation**
$\lfloor \sqrt{3} \rfloor + \lfloor \sqrt{4} \rfloor + \lfloor \sqrt{5} \rfloor + \lfloor \sqrt{6} \rfloor + \lfloor \sqrt{7} \rfloor + \lfloor \sqrt{8} \rfloor + \lfloor \sqrt{9} \rfloor + \lfloor \sqrt{10} \rfloor$
$=1+2+2+2+2+2+3+3=17$
**Input 2**
```
14 29
```
**Output 2**
```
67
```