Given three points $A(x_A,y_A),B(x_B,y_B),C(x_C,y_C)$. Determine if the type of the triangle formed by these points (right, acute, obtuse). It is guaranteed that $A, B, C$ are not collinear.
### Input
- A single line contains six integers $x_A,y_A,x_B,y_B,x_C,y_C$.
### Output
- Print:
+ `RIGHT` if it is a right triangle.
+ `ACUTE` if it is an acute triangle.
+ `OBTUSE` if it is an obtuse triangle.
### Constraints
- $-10^9 \le x, y \le 10^9$.
### Example
Input:
```
0 0 0 5 -1 7
```
Output:
```
OBTUSE
```