Given four points $A(x_A,y_A),B(x_B,y_B),C(x_C,y_C),D(x_D,y_D)$, determine the type of the quadrilateral $ABCD$, convex, concave or crossed. It is guaranteed that no three points are collinear.
### Input
- A single line contains eight integers $x_A,y_A,x_B,y_B,x_C,y_C,x_D,y_D$.
### Output
- Print:
+ `CONVEX` if the given quadrilateral is convex.
+ `CONCAVE` if the given quadrilateral is concave.
+ `CROSSED` if the given quadrilateral is crossed.
### Constraints
- $-10^9 \le x, y \le 10^9$.
### Example
Input:
```
0 0 1 2 1 1 2 1
```
Output:
```
CONCAVE
```