Given an array $A$ of $n$ integers, the weight of a consecutive subarray is defined as the sum of the $k$ largest elements in the subarray, or the sum of all elements if the subarray has fewer than $k$ elements. Compute the total weight of all consecutive subarrays of $A$.
### Input
- The first line contains two integers $n$ and $k$.
- The second line contains $n$ integers $A_i$.
### Output
- Print a single integer representing the total weight of all subarrays, modulo $10^9+7$.
### Constraints
- $1 \le n \le 10^5$.
- $1 \le k \le 100$.
- $1 \le A_i \le 10^9$.
### Example
```
6 3
3 1 5 3 2 6
```
Output:
```
164
```