Given a set $A$ consisting of $n$ distinct integers. There are $n \times (n-1) \times (n-2)$ ways to choose three integers $a, b, c$ from the set. Calculate the sum of $\lfloor \frac{a}{b} \rfloor \lfloor \frac{a}{c} \rfloor \lfloor \frac{b}{c} \rfloor$ for all ways to choose three integers $a, b, c$.
### Input
- The first line contains an integer $n$.
- The second line contains $n$ distinct integers in the set $a$.
### Output
- Print the sum of $\lfloor \frac{a}{b} \rfloor \lfloor \frac{a}{c} \rfloor \lfloor \frac{b}{c} \rfloor$ modulo $2^{32}$ for all choices.
### Constraints
- $1 \leq n \leq 5000$.
- The elements are positive integers not exceeding $5000$.
### Example
Input:
```
4
1 2 3 4
```
Output:
```
36
```